Uncommon Axial Selenium-ligation in Iron–Bleomycin and Hemoglobin

Yukio Sugiura,* June Kuwahara, and Tadashi Suzuki

Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan

Axial S \rightarrow Se co-ordination replacement in iron(III) complexes of bleomycin and hemoglobin gives a shift in the e.s.r. *g*-values (*ca.* $g_{av} = 0.03$) towards lower magnetic field.

The presence of thiolate as an axial ligand at the ironprotoporphyrin IX active site of cytochrome P-450 has been believed to be mainly responsible for many of the enzyme's atypical properties.^{1,2} However, the presence of the RSe⁻-Fe-N ligation mode had not previously been found (even in ironporphyrins and hemoproteins) because of the remarkably facile redox processes in RSeH-Fe¹¹¹ systems. To avoid this problem, we have applied the rapid freezing e.s.r. technique and obtained the first evidence for axial ligation of RSe⁻-Fe-N in the bleomycin-Fe¹¹¹-Se[CH₂]₂NMe₂ adduct complex and in the hemoglobin-Fe¹¹¹-Se[CH₂]₂NMe₂ complex. Indeed, it is known that various spectroscopic parameters are appreciably similar between the iron complexes of bleomycin and porphyrin, except for the CN⁻ adducts.³ Figure 1 shows the comparative e.s.r. spectra for the N,N-dimethylselenocysteamine and N,N-dimethylcysteamine adducts of the bleomycin-Fe¹¹¹ complex. Table 1 summarizes the e.s.r. and crystal field parameters for the bleomycin-Fe¹¹¹-X[CH₂]₂NMe₂ and hemoglobin-Fe¹¹¹-X[CH₂]₂NMe₂(X = Se or S) complexes. These adduct complexes were prepared by addition of excess of HSe[CH₂]₂NMe₂ (or HS[CH₂]₂NMe₂; 50 mM) to the bleomycin-Fe¹¹¹-OH⁻ complex (or methemoglobin; 1 mM) at pH 9.0. The crystal field parameters of axial distortion and rhombic distortion at the low-spin iron(III) coordination sphere were computed from the three g-values according to Bohan's method⁴ on the basis of Griffith's model.

Of special interest is the fact that the e.s.r. *g*-values of the Se-adduct complexes are shifted toward lower magnetic field,

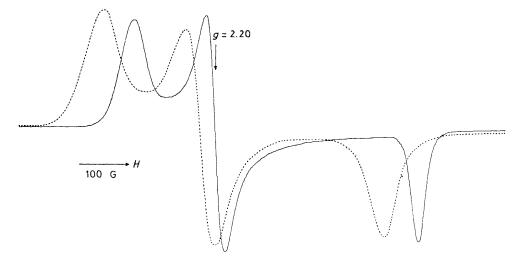


Figure 1. Comparison of the e.s.r. spectra of the bleomycin- Fe^{III} - $Se[CH_2]_2NMe_2$ complex (-----) and the bleomycin- Fe^{III} - $Se[CH_2]_2NMe_2$ complex (-----) at 77 K.

Table 1. E.s.r. and crystal field parameters for iron(III) complexes of bleomycin and hemoglobin with axial selenium or sulphur coordination.

Complex	g_z	g_y	g_x	g_{av}	μ/λ	$ R/\mu $
Bleomycin-Fe ¹¹¹ -Se[CH ₂] ₂ NMe ₂	1.969	2.218	2.368	2.185	7.96	0.45
Bleomycin-Fe ^{III} -S[CH ₂] ₂ NMe ₂	1.937	2.203	2.330	2.157	-7.61	0.41
Hemoglobin-Fe ¹¹¹ –Se[CH ₂] ₂ NMe ₂	1.942	2.329	2.411	2.227	-6.01	0.21
Hemoglobin-Fe ¹¹¹ –S[CH ₂] ₂ NMe ₂	1.940	2.260	2.367	2.189	-6.77	0.30

compared with those of the corresponding S-adducts. The similarities in line shapes and apparent g-values are a clear indication of equivalent ground electronic states for these iron complexes. Similar e.s.r. behaviour has also been observed for Se-adrenodoxin ($g_{\perp} = 1.975$ and $g_{\parallel} = 2.051$)⁵ and Se-putidaredoxin (g = 1.93, 1.98, and 2.04),⁶ in which selenium is substituted in the bridging positions of native S-adrenodoxin $(g_{\perp}=1.940 \text{ and } g_{\parallel}=2.027)$ and S-putidared oxin $(g_{\perp}=1.93$ and $g_{\parallel} = 2.01$). One characteristic feature of the bleomycin– Fe¹¹¹ complexes is large tetragonality and rhombicity in comparison with the hemoglobin complexes. Although the bleomycin-Fe¹¹¹ complex with the axial Se-ligand shows larger rhombicity and tetragonality than the corresponding S-adduct complex, this tendency is reversed in the case of the hemoglobin complexes. Probably, this dissimilarity may be attributed to structural differences in the basal-plane of the peptide and porphyrin skeletons and in the axial trans-ligand

of the α -amino and imidazole groups, respectively, between iron-bleomycin and hemoglobin.

Received, 17th May 1982; Com. 553

References

- 1 T. G. Traylor, T. C. Mincey, and A. P. Berzinis, J. Am. Chem. Soc., 1981, 103, 7084.
- 2 J. P. Collman and S. E. Groh, J. Am. Chem. Soc., 1982, 104, 1391.
- 3 Y. Sugiura, T. Suzuki, H. Kawabe, H. Tanaka, and K. Watanabe, *Biochim. Biophys. Acta*, 1982, **716**, 38.
- 4 T. L. Bohan, J. Magn. Reson., 1977, 26, 109.
- 5 M. Mukai, J. J. Huang, and T. Kimura, *Biochim. Biophys. Acta*, 1974, 336, 427.
- 6 J. C. M. Tsibris, M. J. Namtvedt, and I. C. Gunsalus, Biochem. Biophys. Res. Commun., 1968, 30, 323.